بهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه
نویسندگان
چکیده مقاله:
امروزه استفاده از سیستمهای هوشمند در تشخیص پزشکی به تدریج در حال افزایش است. این سیستمها میتوانند به کاهش خطایی که ممکن است توسط کارشناسان کمتجربه اتفاق بیافتد، کمک کند. بدین منظور استفاده از سیستمهای هوشمند مصنوعی در پیشبینی و تشخیص سرطان سینه که یکی از رایجترین سرطانها در بین زنان است، مورد توجه میباشد. در این تحقیق فرآیند تشخیص بیماری سرطان سینه با یک رویکرد دو مرحلهای انجام میشود. در مرحله اول دو پارامتر ویژگیهای موثر و تعداد نودهای لایه مخفی به منظور آموزش شبکه عصبی MLP به صورت همزمان توسط یک الگوریتم ژنتیک بهینهسازی میشوند. سپس با استفاده از ویژگی-های انتخاب شده و تعداد نودهای لایه مخفی، یک مدل طبقهبندی برمبنای شبکه عصبی MLP برای تشخیص بیماری سرطان سینه در مرحله دوم ایجاد میشود. در این مرحله از یک الگوریتم ژنتیک موازی FinGrain بر مبنای پارامترهای بهینهسازی شده، برای تنظیم وزنهای شبکه عصبی MLP استفاده میشود. ارزیابی آزمایشها نشان میدهد که روش پیشنهادی در مقایسه با روشهای GAANN و CAFS روی مجموعهداده WBCD به نتایج بهتری رسیده است و دقت 98.72% را در حالت میانگین گزارش میکند.
منابع مشابه
استفاده از الگوریتم جغرافیای زیستی در بهینه سازی شبکه عصبی جهت تشخیص سرطان پستان
چکیده مقدمه: در حال حاضر، سرطان پستان از شایعترین بیماریهای زنان است. دسته بندی دقیق تومور سرطان پستان نقش کلیدی را در امر تشخیص پزشکی ایفا میکند. متخصصین به دنبال روشهای بهینه جهت بهبود تشخیص این تومور می باشند. روش بررسی: در این مطالعه شبکه عصبی مبتنی بر جغرافیای زیستی ارایه گردیده که با استفاده از آنالیز اجزای اصلی در مرحله آماده سازی و بروز رسانی همزمان وزنها موفق به دستهبندی داد...
متن کاملبهینه سازی زمان بندی الگوریتم های موازی با استفاده از الگوریتم ژنتیک
In scheduling, a set of machines in parallel is a setting that is important, from both the theoretical and practical points of view. From the theoretical viewpoint, it is a generalization of the single machine scheduling problem. From the practical point of view the occurrence of resources in parallel is common in real-world. When machines are computers, a parallel program can be conceived as a...
متن کاملبهینه سازی برشکاری جت آب همراه با ذرات ساینده با استفاده از روش شبکه عصبی - الگوریتم ژنتیک
در این پژوهش، روش شبکه عصبی- الگوریتم ژنتیک برای بهینه سازی صافی سطح در برشکاری شیشه توسط فرآیند برشکاری جت آب همراه با ذرات ساینده پیشنهاد شده است. از شبکه عصبی مصنوعی برای مدلسازی و پیش بینی زبری سطح با توجه به پارامترهای فرآیند شامل فشار جت آب، سرعت پیشروی، نرخ ریزش ذرات ساینده و فاصله نازل تا سطح قطعه کار استفاده شده است. مقایسه نتایج به دست آمده از مدل شبکه عصبی با نتایج به دست آمده از آ...
متن کاملبهینه سازی عملکرد درهم شکستگی تیوبهای جدار نازک اس شکل با استفاده از شبکه عصبی و الگوریتم ژنتیک
در این مقاله به مطالعه رفتار جذب انرژی سازههای تک جدارهای اس- شکل با هشت سطح مقطع مختلف از جمله مثلث، مربع، شش ضلعی، هشت ضلعی، دایروی، مستطیلی، لوزوی و بیضوی تحت بارگذاری دینامیکی محوری پرداخته شده است. این سازهها در صنعت حمل و نقل به دلیل شکل هندسی مخصوصشان در جاهایی که محدودیت مکانی ایجاب میکند مورد استفاده قرار میگیرند. بدلیل نسبت استحکام به وزن بالای آلومنیوم، جنس سازههای ذکر شده ...
متن کاملمدلکردن و بهینه سازی سنتز آنزیمی کافئیک اسید فن اتیل استر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانول در حضور لیپاز تثبیت شده از مخمر آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید فن اتیل استر در سیستم ایزواکتان با استفاده از روشهای شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان، ...
متن کاملبهینه سازی زمان بندی الگوریتم های موازی با استفاده از الگوریتم ژنتیک
زمانبندی مجموعهای از ماشین های موازی که در یک محیط هستند، هم از نظر تئوری و هم از نظر کاربردی مهم است. از نظر تئوری، تعمیم مسالهی زمانبندی یک ماشین است و از نظر کاربردی صحت منابع موازی در جهان واقعی میباشد. وقتی ماشین ها، کامپیوتر باشند یک برنامه ی موازی نیاز است زیرا اعضای مجموعه به طور موازی اجرا می شوند و این اجرا براساس ارتباطات تقدمی آنها است. مزیت اجرای زمان بندی وظایف، قدرت مح...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 57
صفحات 12- 12
تاریخ انتشار 2019-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023